
Package: NMsim (via r-universe)
October 31, 2024

Type Package

Title Seamless 'Nonmem' Simulation Platform

Version 0.1.3.942

Maintainer Philip Delff <philip@delff.dk>

Description A complete and seamless 'Nonmem' simulation interface
within R. Turns 'Nonmem' control streams into simulation
control streams, executes them with specified simulation input
data and returns the results. The simulation is performed by
'Nonmem', eliminating manual work and risks of
re-implementation of models in other tools.

License MIT + file LICENSE

RoxygenNote 7.3.2

Roxygen list(roclets=c(``collate'', ``namespace'', ``rd'', ``vignette''))

Depends R (>= 3.5.0)

Imports data.table, NMdata (>= 0.1.6), R.utils, MASS, fst, xfun

Suggests testthat, knitr, rmarkdown, ggplot2, patchwork, tracee,
tidyvpc, simpar

Encoding UTF-8

LazyData true

Additional_repositories https://mpn.metworx.com/snapshots/stable/2024-09-23

BugReports https://github.com/NMautoverse/NMsim/issues

Language en-US

URL https://NMautoverse.github.io/NMsim/

Repository https://nmautoverse.r-universe.dev

RemoteUrl https://github.com/nmautoverse/nmsim

RemoteRef HEAD

RemoteSha ef9f184652f021bf0f346fef496bfc1a212d41b0

1

https://mpn.metworx.com/snapshots/stable/2024-09-23
https://github.com/NMautoverse/NMsim/issues
https://NMautoverse.github.io/NMsim/

2 add

Contents
add . 2
addEVID2 . 3
addResVar . 5
expandCovs . 7
genPhiFile . 8
inputArchiveDefault . 8
NMcreateDoses . 9
NMexec . 11
NMreadSim . 13
NMsim . 14
NMsimTestConf . 21
NMsim_asis . 22
NMsim_default . 22
NMsim_EBE . 23
NMsim_NWPRI . 24
NMsim_typical . 25
NMsim_VarCov . 26
NWPRI_df . 26
overwrite . 27
readParsWide . 28
sampleParsSimpar . 29
simPopEtas . 30
unNMsimModTab . 31
unNMsimRes . 32

Index 34

add Create function that adds text elements to vector

Description

Create function that adds text elements to vector

Usage

add(..., .pos = "bottom")

Arguments

... Elements to add.

.pos Either \"top\" or \"bottom\". Decides if new text is prepended or appended to
existing text.

Value

A function that adds the specified text to character vectors

addEVID2 3

Examples

myfun <- add("b","d")
myfun("a")
myfun2 <- add("b","d",.pos="top")
myfun2("a")

addEVID2 Add simulation records to dosing records

Description

Adds simulation events to all subjects in a data set. Copies over columns that are not varying at
subject level (i.e. non-variying covariates). Can add simulation events relative to previous dosing
time.

Usage

addEVID2(
data,
TIME,
TAPD,
CMT,
EVID = 2,
args.NMexpandDoses,
as.fun,
doses,
time.sim

)

Arguments

data Nonmem-style data set. If using ‘TAPD‘ an ‘EVID‘ column must contain 1 for
dosing records.

TIME A numerical vector with simulation times. Can also be a data.frame in which
case it must contain a ‘TIME‘ column and is merged with ‘data‘.

TAPD A numerical vector with simulation times, relative to previous dose. When this
is used, ‘data‘ must contain rows with ‘EVID=1‘ events and a ‘TIME‘ column.
‘TAPD‘ can also be a data.frame in which case it must contain a ‘TAPD‘ column
and is merged with ‘data‘.

CMT The compartment in which to insert the EVID=2 records. If longer than one,
the records will be repeated in all the specified compartments. If a data.frame,
covariates can be specified.

EVID The value to put in the EVID column for the created rows. Default is 2 but 0
may be prefered even for simulation.

4 addEVID2

args.NMexpandDoses

Only relevant - and likely not needed - if data contains ADDL and II columns. If
those columns are included, ‘addEVID2()‘ will use ‘NMdata::NMexpanDoses()‘
to evaluate the time of each dose. Other than the ‘data‘ argument, ‘addEVID2()‘
relies on the default ‘NMexpanDoses()‘ argument values. If this is insuffi-
cient, you can specify other argument values in a list, or you can call ‘NM-
data::NMexpanDoses()‘ manually before calling ‘addEVID2()‘.

as.fun The default is to return data as a data.frame. Pass a function (say ‘tibble::as_tibble‘)
in as.fun to convert to something else. If data.tables are wanted, use as.fun="data.table".
The default can be configured using NMdataConf.

doses Deprecated. Use ‘data‘.

time.sim Deprecated. Use ‘TIME‘.

Details

The resulting data set is ordered by ID, TIME, and EVID. You may have to reorder for your specific
needs.

Value

A data.frame with dosing records

Examples

(doses1 <- NMcreateDoses(TIME=c(0,12,24,36),AMT=c(2,1)))
addEVID2(doses1,TIME=seq(0,28,by=4),CMT=2)

two named compartments
dt.doses <- NMcreateDoses(TIME=c(0,12),AMT=10,CMT=1)
seq.time <- c(0,4,12,24)
dt.cmt <- data.frame(CMT=c(2,3),analyte=c("parent","metabolite"))
res <- addEVID2(dt.doses,TIME=seq.time,CMT=dt.cmt)

Separate sampling schemes depending on covariate values
dt.doses <- NMcreateDoses(TIME=data.frame(regimen=c("SD","MD","MD"),TIME=c(0,0,12)),AMT=10,CMT=1)

seq.time.sd <- data.frame(regimen="SD",TIME=seq(0,6))
seq.time.md <- data.frame(regimen="MD",TIME=c(0,4,12,24))
seq.time <- rbind(seq.time.sd,seq.time.md)
addEVID2(dt.doses,TIME=seq.time,CMT=2)

an observed sample scheme and additional simulation times
df.doses <- NMcreateDoses(TIME=0,AMT=50,addl=list(ADDL=2,II=24))
dense <- c(seq(1,3,by=.1),4:6,seq(8,12,by=4),18,24)
trough <- seq(0,3*24,by=24)
sim.extra <- seq(0,(24*3),by=2)
time.all <- c(dense,dense+24*3,trough,sim.extra)
time.all <- sort(unique(time.all))
dt.sample <- data.frame(TIME=time.all)
dt.sample$isobs <- as.numeric(dt.sample$TIME%in%c(dense,trough))
dat.sim <- addEVID2(dt.doses,TIME=dt.sample,CMT=2)

addResVar 5

TAPD - time after previous dose
df.doses <- NMcreateDoses(TIME=c(0,12),AMT=10,CMT=1)
seq.time <- c(0,4,12,24)
addEVID2(df.doses,TAPD=seq.time,CMT=2)

TIME and TAPD
df.doses <- NMcreateDoses(TIME=c(0,12),AMT=10,CMT=1)
seq.time <- c(0,4,12,24)
addEVID2(df.doses,TIME=seq.time,TAPD=3,CMT=2)

addResVar Add residual variability based on parameter estimates

Description

Add residual variability based on parameter estimates

Usage

addResVar(
data,
path.ext,
prop = NULL,
add = NULL,
log = FALSE,
par.type = "SIGMA",
trunc0 = TRUE,
scale.par,
subset,
seed,
col.ipred = "IPRED",
col.ipredvar = "IPREDVAR",
as.fun

)

Arguments

data A data set containing indiviudual predictions. Often a result of NMsim.

path.ext Path to the ext file to take the parameter estimates from.

prop Parameter number of parameter holding variance of the proportional error com-
ponent. If ERR(1) is used for proportional error, use prop=1. Can also refer to a
theta number.

add Parameter number of parameter holding variance of the additive error compo-
nent. If ERR(1) is used for additive error, use add=1. Can also refer to a theta
number.

6 addResVar

log Should the error be added on log scale? This is used to obtain an exponential
error distribution.

par.type Use "sigma" if variances are estimated with the SIGMA matrix. Use "theta" if
THETA parameters are used. See ‘scale.par‘ too.

trunc0 If log=FALSE, truncate simulated values at 0? If trunc0, returned predictions
can be negative.

scale.par Denotes if parmeter represents a variance or a standard deviation. Allowed val-
ues and default value depends on ‘par.type‘.

• if par.type="sigma" only "var" is allowed.
• if par.type="theta" allowed values are "sd" and "var". Default is "sd".

subset A character string with an expression denoting a subset in which to add the
residual error. Example: subset="DVID==’A’"

seed A number to pass to set.seed() before simulating. Default is to generate a seed
and report it in the console. Use seed=FALSE to avoid setting the seed (if you
prefer doing it otherwise).

col.ipred The name of the column containing individual predictions.
col.ipredvar The name of the column to be created by addResVar to contain the simulated

observations (individual predictions plus residual error).
as.fun The default is to return data as a data.frame. Pass a function (say ‘tibble::as_tibble‘)

in as.fun to convert to something else. If data.tables are wanted, use as.fun="data.table".
The default can be configured using NMdataConf.

Value

An updated data.frame

Examples

Not run:
based on SIGMA
simres.var <- addResVar(data=simres,

path.ext = "path/to/model.ext",
prop = 1,
add = 2,
par.type = "SIGMA",
log = FALSE)

If implemented using THETAs
simres.var <- addResVar(data=simres,

path.ext = "path/to/model.ext",
prop = 8, ## point to elements in THETA
add = 9, ## point to elements in THETA
par.type = "THETA",
log = FALSE)

End(Not run)

expandCovs 7

expandCovs Create data set where each covariate is univariately varied

Description

Each covariate is univariately varied while other covariates are kept at reference values. This struc-
ture is often used for forest-plot type simulations.

Usage

expandCovs(..., data, col.id = "ID", sigdigs = 2)

Arguments

... Covariates provided as lists - see examples. The name of the arguement must
match columns in data set. An element called ref must contain either a reference
value or a function to use to derive the reference value from data (e.g. ‘median‘).
Provide either ‘values‘ or ‘quantiles‘ to define the covariate values of interest
(typically, the values that should later be simulated and maybe shown in a forest
plot). ‘label‘ is optional - if missing, the argument name will be used.

data A data set needed if the reference(s) value of one or more covariates is/are pro-
vided as functions (like median), or if covariate values are provided as quantiles.

col.id The subject ID column name. Necessary because quantiles sould be quantiles
of distribution of covariate on subjects, not on observations (each subject con-
tributes once).

sigdigs Used for rounding of covariate values if using quantiles or if using a function to
find reference.

Examples

Not run:
file.mod <- system.file("examples/nonmem/xgxr134.mod",package="NMdata")
res <- NMdata::NMscanData(file.mod)
expandCovLists(

WEIGHTB=list(ref=70,values=c(40,60,80,100),label="Bodyweight (kg)"),
notice, values OR quantiles can be provided

AGE=list(ref=median, quantiles=c(10,25,75,90)/100, label="Age (years)"
),

data=res
)

End(Not run)

8 inputArchiveDefault

genPhiFile Generate a .phi file for further simulation with Nonmem

Description

This will typically be used in a couple of different situations. One is if a number of new sub-
jects have been simulated and their ETAs should be reused in subsequent simulations. Another is
internally by NMsim when simulating new subjects from models estimated with SAEM.

Usage

genPhiFile(data, file)

Arguments

data A dataset that contains "ID" and all ETAs. This can be obtained by ‘NM-
data::NMscanData‘.

file Path to the .phi file to be written.

inputArchiveDefault Default location of input archive file

Description

Default location of input archive file

Usage

inputArchiveDefault(file)

Arguments

file Path to input or output control stream.

Value

A file name (character)

NMcreateDoses 9

NMcreateDoses Easily and flexibly generate dosing records

Description

Columns will be extended by repeating last value of the column if needed in order to match length
of other columns. Combinations of different columns can be generated by specifying covariates on
the columns where the regimens differ.

Usage

NMcreateDoses(
TIME,
AMT = NULL,
EVID = 1,
CMT = 1,
ADDL = NULL,
II = NULL,
RATE = NULL,
SS = NULL,
addl = NULL,
addl.lastonly = TRUE,
col.id = "ID",
as.fun

)

Arguments

TIME The time of the dosing events. Required.

AMT vector or data.frame with amounts amount. Required.

EVID The event ID to use for doses. Default is to use EVID=1, but EVID might also
be wanted.

CMT Compartment number. Default is to dose into CMT=1. Use ‘CMT=NA‘ to omit
in result.

ADDL Number of additional dose events. Must be in combination with and consistent
with II. Notice if of length 1, only applied to last event in each regimen.

II Dosing frequency of additional events specified in ‘ADDL‘. See ‘ADDL‘ too.

RATE Infusion rate. Optional.

SS steady-state flag. Optional.

addl A list of ADDL and II that will be applied to last dose. This may be prefered if
II and ADDL depend on covariates - see examples. Optional.

addl.lastonly If ADDL and II are of length 1, apply only to last event of a regimen? The
default is ‘TRUE‘.

10 NMcreateDoses

col.id Default is to denote the dosing regimens by an ID column. The name of the col-
umn can be modified using this argument. Use ‘col.id=NA‘ to omit the column
altogether. The latter may be wanted if repeating the regimen for a number of
subjects after running ‘NMcreateDoses()‘.

as.fun The default is to return data as a data.frame. Pass a function (say ‘tibble::as_tibble‘)
in as.fun to convert to something else. If data.tables are wanted, use as.fun="data.table".
The default can be configured using NMdataConf.

Details

Only TIME and AMT are required. AMT, RATE, SS, II, ADDL, CMT are of length 1 or longer.
Those not of max length 1 are repeated. If TIME is longer than those, they are extended to match
length of TIME. All these arguments can be data.frames with additional columns that define distinct
dosing regimens - with distinct subject ids. However, if covariates are applied to ADDL+II, see the
addl argument and see examples.
Allowed combinations of AMT, RATE, SS, II here: https://ascpt.onlinelibrary.wiley.com/
doi/10.1002/psp4.12404

Value

A data.frame with dosing events

Examples

library(data.table)
Users should not use setDTthreads. This is for CRAN to only use 1 core.
data.table::setDTthreads(1)
arguments are expanded - makes loading easy
NMcreateDoses(TIME=c(0,12,24,36),AMT=c(2,1))
Different doses by covariate
NMcreateDoses(TIME=c(0,12,24),AMT=data.table(AMT=c(2,1,4,2),DOSE=c(1,2)))
Make Nonmem repeat the last dose. This is a total of 20 dosing events.
The default, addl.lastonly=TRUE means if ADDL and II are of
length 1, they only apply to last event.
NMcreateDoses(TIME=c(0,12),AMT=c(2,1),ADDL=9*2,II=12)
dt.amt <- data.table(DOSE=c(100,400))
multiple dose regimens.
Specifying the time points explicitly
dt.amt <- data.table(AMT=c(200,100,800,400)*1000,DOSE=c(100,100,400,400))
doses.md.1 <- NMcreateDoses(TIME=seq(0,by=24,length.out=7),AMT=dt.amt)
doses.md.1$dose <- paste(doses.md.1$DOSE,"mg")
doses.md.1$regimen <- "QD"
doses.md.1
or using ADDL+II
dt.amt <- data.table(AMT=c(200,100,800,400)*1000,DOSE=c(100,100,400,400))
doses.md.2 <- NMcreateDoses(TIME=c(0,24),AMT=dt.amt,addl=data.table(ADDL=c(0,5),II=c(0,24)))
doses.md.2$dose <- paste(doses.md.2$DOSE,"mg")
doses.md.2$regimen <- "QD"
doses.md.2
ADDL and II can be wrapped in a data.frame. This allows including covariates
NMcreateDoses(TIME=c(0,12),AMT=c(2,1),addl=data.frame(ADDL=c(NA,9*2),II=c(NA,12),trt=c("A","B")))

https://ascpt.onlinelibrary.wiley.com/doi/10.1002/psp4.12404
https://ascpt.onlinelibrary.wiley.com/doi/10.1002/psp4.12404

NMexec 11

NMexec Execute Nonmem and archive input data with model files

Description

Execute Nonmem from within R - optionally but by default in parallel. Archiving the input data
ensures that postprocessing can still be reproduced if the input data files should be updated.

Usage

NMexec(
files,
file.pattern,
dir,
sge = TRUE,
input.archive,
nc = 64,
dir.data = NULL,
wait = FALSE,
args.psn.execute,
update.only = FALSE,
nmquiet = FALSE,
method.execute,
dir.psn,
path.nonmem,
system.type,
files.needed,
clean = 1,
backup = TRUE,
quiet = FALSE

)

Arguments

files File paths to the models (control streams) to run nonmem on. See file.pattern
too.

file.pattern Alternatively to files, you can supply a regular expression which will be passed
to list.files as the pattern argument. If this is used, use dir argument as well.
Also see data.file to only process models that use a specific data file.

dir If file.pattern is used, dir is the directory to search for control streams in.

sge Use the sge queing system. Default is TRUE. Disable for quick models not to
wait for the queue to run the job.

input.archive A function of the model file path to generate the path in which to archive the
input data as RDS. Set to NULL not to archive the data.

nc Number of cores to use if sending to the cluster. This will only be used if
method.execute="psn", and sge=TRUE. Default is 64.

12 NMexec

dir.data The directory in which the data file is stored. This is normally not needed as
data will be found using the path in the control stream. This argument may be
removed in the future since it should not be needed.

wait Wait for process to finish before making R console available again? This is
useful if calling NMexec from a function that needs to wait for the output of the
Nonmem run to be available for further processing.

args.psn.execute

A character string with arguments passed to execute. Default is "-model_dir_name
-nm_output=coi,cor,cov,ext,phi,shk,xml".

update.only Only run model(s) if control stream or data updated since last run?

nmquiet Suppress terminal output from ‘Nonmem‘. This is likely to only work on linux/unix
systems.

method.execute How to run Nonmem. Must be one of ’psn’, ’nmsim’, or ’direct’.

• psn PSN’s execute is used. This supports parallel Nonmem runs. Use the
nc argument to control how many cores to use for each job. For estimation
runs, this is most likely the better choice, if you have PSN installed. See
dir.psn argument too.

• nmsim Creates a temporary directory and runs Nonmem inside that direc-
tory before copying relevant results files back to the folder where the input
control stream was. If sge=TRUE, the job will be submitted to a cluster,
but parallel execution of the job itself is not supported. See path.nonmem
argument too.

• direct Nonmem is called directly on the control stream. This is the simplest
method and is the least convenient in most cases. It does not offer parallel
runs and leaves all the Nonmem output files next to the control streams.

See ‘sge‘ as well.

dir.psn The directory in which to find PSN executables. This is only needed if these are
not searchable in the system path, or if the user should want to be explicit about
where to find them (i.e. want to use a specific installed version of PSN).

path.nonmem The path to the nonmem executable. Only used if method.execute="direct"
or method.execute="nmsim" (which is not default). If this argument is not sup-
plied, NMexec will try to run nmfe75, i.e. this has to be available in the path of
the underlying shell. The default value can be modified using NMdata::NMdataConf,
like NMdataConf(path.nonmem="/path/to/nonmem")

system.type A charachter string, either \"windows\" or \"linux\" - case insensitive. Windows
is only experimentally supported. Default is to use Sys.info()[["sysname"]].

files.needed In case method.execute="nmsim", this argument specifies files to be copied into
the temporary directory before Nonmem is run. Input control stream and simu-
lation input data does not need to be specified.

clean The degree of cleaning (file removal) to do after Nonmem execution. If ‘method.execute=="psn"‘,
this is passed to PSN’s ‘execute‘. If ‘method.execute=="nmsim"‘ a similar be-
havior is applied, even though not as granular. NMsim’s internal method only
distinguishes between 0 (no cleaning), any integer 1-4 (default, quite a bit of
cleaning) and 5 (remove temporary dir completely).

NMreadSim 13

backup Before running, should existing results files be backed up in a sub directory? If
not, the files will be deleted before running.

quiet Suppress messages on what NMexec is doing? Default is FALSE.

Details

Use this to read the archived input data when retrieving the nonmem results: NMdataConf(file.data=inputArchiveDefault)

Since ‘NMexec‘ will typically not be used for simulations directly (‘NMsim‘ is the natural interface
for that purpose), the default method for ‘NMexec‘ is currently to use ‘method.execute="psn"‘
which is at this point the only of the methods that allow for multi-core execution of a single Nonmem
job (NB: ‘method.execute="NMsim"‘ can run multiple jobs in parallel which is normally sufficient
for simulations).

Value

NULL (invisibly)

Examples

file.mod <- "run001.mod"
Not run:
run locally - not on cluster
NMexec(file.mod,sge=FALSE)
run on cluster with 16 cores. 64 cores is default
NMexec(file.mod,nc=16)
submit multiple models to cluster
multiple.models <- c("run001.mod","run002.mod")
NMexec(multiple.models,nc=16)
run all models called run001.mod - run099.mod if updated. 64 cores to each.
NMexec(file.pattern="run0..\\.mod",dir="models",nc=16,update.only=TRUE)

End(Not run)

NMreadSim Read simulation results based on NMsim’s track of model runs

Description

Read simulation results based on NMsim’s track of model runs

Usage

NMreadSim(
x,
check.time = FALSE,
dir.sims,
wait = FALSE,
quiet = FALSE,

14 NMsim

progress,
as.fun

)

Arguments

x Path to the simulation-specific rds file generated by NMsim, typically called
‘NMsim_MetaData.rds‘. Can also be a table of simulation runs as stored in
‘rds‘ files by ‘NMsim‘. The latter should almost never be used.

check.time If found, check whether ‘fst‘ file modification time is newer than ‘rds‘ file.
The ‘fst‘ is generated based on information in ‘rds‘, but notice that some sys-
tems don’t preserve the file modification times. Becasue of that, ‘check.time‘ is
‘FALSE‘ by default.

dir.sims By default, ‘NMreadSim‘ will use information about the relative path from the
results table file (‘_MetaData.rds‘) to the Nonmem simulation results. If these
paths have changed, or for other reasons this doesn’t work, you can use the
‘dir.sims‘ argument to specify where to find the Nonmem simulation results. If
an ‘.fst‘ file was already generated and is found next to the ‘_MetaData.rds‘, the
path to the Nonmem simulation results is not used.

wait If simulations seem to not be done yet, wait for them to finish? If not, an error
will be thrown. If you choose to wait, the risk is results never come. ‘NMread-
Sim‘ will be waiting for an ‘lst‘ file. If Nonmem fails, it will normally generate
an ‘lst‘ file. But if ‘NMTRAN‘ fails (checks of control stream prior to running
Nonmem), the ‘lst‘ file is not generated. Default is not to wait.

quiet Turn off some messages about what is going on? Default is to report the mes-
sages.

progress Track progress? Default is ‘TRUE‘ if ‘quiet‘ is FALSE and more than one model
is being read. The progress tracking is based on the number of models com-
pleted/read, not the status of the individual models.

as.fun The default is to return data as a data.frame. Pass a function (say ‘tibble::as_tibble‘)
in as.fun to convert to something else. If data.tables are wanted, use as.fun="data.table".
The default can be configured using NMdataConf.

Value

A data set of class defined by as.fun

NMsim Simulate from an estimated Nonmem model

Description

Supply a data set and an estimation input control stream, and NMsim can create neccesary files
(control stream, data files), run the simulation and read the results. It has additional methods for
other simulation types available, can do multiple simulations at once and more. Please see vignettes
for an introduction to how to get the most out of this.

NMsim 15

Usage

NMsim(
file.mod,
data,
dir.sims,
name.sim,
order.columns = TRUE,
file.ext = NULL,
script = NULL,
subproblems = NULL,
reuse.results = FALSE,
seed.R,
seed.nm,
args.psn.execute,
table.vars,
table.options,
text.sim = "",
method.sim = NMsim_default,
typical = FALSE,
execute = TRUE,
sge = FALSE,
nc = 1,
transform = NULL,
method.execute,
method.update.inits,
create.dirs = TRUE,
dir.psn,
modify.model,
sim.dir.from.scratch = TRUE,
col.row,
args.NMscanData,
path.nonmem = NULL,
nmquiet,
progress,
as.fun,
suffix.sim,
text.table,
system.type = NULL,
dir.res,
file.res,
wait,
auto.dv = TRUE,
clean,
quiet = FALSE,
check.mod = TRUE,
seed,
list.sections,
format.data.complete = "rds",

16 NMsim

...
)

Arguments

file.mod Path(s) to the input control stream(s) to run the simulation on. The output control
stream is for now assumed to be stored next to the input control stream and
ending in .lst instead of .mod. The .ext file must also be present. If simulating
known subjects, the .phi is necessary too.

data The simulation data as a data.frame or a list of data.frames. If a list, the
model(s) will be run on each of the data sets in the list.

dir.sims The directory in which NMsim will store all generated files. Default is to create
a folder called ‘NMsim‘ next to ‘file.mod‘.

name.sim Give all filenames related to the simulation a suffix. A short string describing
the sim is recommended like "ph3_regimens".

order.columns reorder columns by calling NMdata::NMorderColumns before saving dataset
and running simulations? Default is TRUE.

file.ext Optionally provide a parameter estimate file from Nonmem. This is normally
not needed since ‘NMsim‘ will by default use the ext file stored next to the
input control stream (replacing the file name extension with ‘.ext‘). If using
method.update.inits="psn", this argument cannot be used. If you want provide
parameters to be used for the simulation, look at the ‘ext‘ argument to ‘NM-
sim_VarCov‘.

script The path to the script where this is run. For stamping of dataset so results can
be traced back to code.

subproblems Number of subproblems to use as SUBPROBLEMS in $SIMULATION block in Non-
mem. The default is subproblem=0 which means not to use SUBPROBLEMS.

reuse.results If simulation results found on file, should they be used? If TRUE and reading
the results fail, the simulations will still be rerun.

seed.R A value passed to set.seed(). It may be better use seed.R rather than call-
ing set.seed() manually because the seed can then be captured and stored by
NMsim() for reproducibility. See seed.nm for finer control of the seeds that are
used in the Nonmem control streams.

seed.nm Control Nonmem seeds. If a numeric, a vector or a ‘data.frame‘, these are used
as the the seed values (a single value or vector will be recycled so make sure
the dimesnsions are right, the number of columns in a data.frame will dictate
the number of seeds in each Nonmem control stream. Use a list with elements
‘values‘, and ‘dist‘ and others for detailed control of the random sources. See
?NMseed for details on what arguments can be passed this way.
Default is to draw seeds betwen 0 and 2147483647 (the values supported by
Nonmem) for each simulation. You can pass a function that will be evaluated
(say to choose a different pool of seeds to draw from).
To avoid changing an exisiting seed in a control stream, use seed.nm="asis".
In case method.sim=NMsim_EBE, seeds are not used.

args.psn.execute

A charachter string that will be passed as arguments PSN’s ‘execute‘.

NMsim 17

table.vars Variables to be printed in output table as a character vector or a space-separated
string of variable names. The default is to export the same tables as listed in the
input control stream. If table.vars is provided, all output tables in estimation
control streams are dropped and replaced by a new one with just the provided
variables. If many variables are exported, and much fewer are used, it can speed
up NMsim significantly to only export what is needed (sometimes this is as little
as "PRED IPRED"). Nonmem writes data slowly so reducing output data can
make a big difference in execution time. See table.options too.

table.options A character vector or a string of space-separated options. Only used if table.vars
is provided. If constructing a new output table with table.vars the default is to
add two options, NOAPPEND and NOPRINT. You can modeify that with table.options.
Do not try to modify output filename - NMsim takes care of that.

text.sim A character string to be pasted into $SIMULATION. This must not contain
seed or SUBPROBLEM which are handled separately. Default is to include
"ONLYSIM". To avoid that, use text.sim="".

method.sim A function (not quoted) that creates the simulation control stream and other
necessary files for a simulation based on the estimation control stream, the data,
etc. The default is called NMsim_default which will replace any estimation
and covariance step by a simulation step. See details section on oter methods,
and see examples and especially vignettes on how to use the different provided
methods.

typical Run with all ETAs fixed to zero? Technically all ETAs=0 is obtained by replac-
ing $OMEGA by a zero matrix. Default is FALSE.

execute Execute the simulation or only prepare it? ‘execute=FALSE‘ can be useful if
you want to do additional tweaks or simulate using other parameter estimates.

sge Submit to cluster? Default is not to, but this is very useful if creating a large
number of simulations, e.g. simulate with all parameter estimates from a boot-
strap result.

nc Number of cores used in parallelization. This is so far only supported with
method.execute="psn".

transform A list defining transformations to be applied after the Nonmem simulations and
before plotting. For each list element, its name refers to the name of the column
to transform, the contents must be the function to apply.

method.execute Specify how to call Nonmem. Options are "psn" (PSN’s execute), "nmsim"
(an internal method similar to PSN’s execute), and "direct" (just run Nonmem
directly and dump all the temporary files). "nmsim" has advantages over "psn"
that makes it the only supported method when type.sim="NMsim_EBE". "psn"
has the simple advantage that the path to nonmem does not have to be specified
if "execute" is in the system search path. So as long as you know where your
Nonmem executable is, "nmsim" is recommended. The default is "nmsim" if
path.nonmem is specified, and "psn" if not.

method.update.inits

The initial values of all parameters are by updated from the estimated model
before running the simulation. NMsim can do this with a native function or use
PSN to do it - or the step can be skipped to not update the values. The possible
values are

18 NMsim

• "psn" uses PSN’s "update_inits". Requires a functioning PSN installation
and possibly that dir.psn is correctly set. The advantages of this method
are that it keeps comments in the control stream and that it is a method
known to many.

• "nmsim" Uses a simple internal method to update the parameter values
based on the ext file. The advantages of "nmsim" are it does not require
PSN, and that it does not rely on code-interpretation for generation of sim-
ulation control streams. "nmsim" fixes the whole OMEGA and SIGMA
matrices as single blocks making the $OMEGA and $SIGMA sections of
the control streams less easy to read. On the other hand, this method is ro-
bust because it avoids any interpretation of BLOCK structure or other code
in the control streams.

• "none" Do nothing. This is useful if the model to simulate has not been
estimated but parameter values have been manually put into the respective
sections in the control stream.
On linux/mac, The default is to use "PSN" if found. On Windows, "nmsim"
is the default.

create.dirs If the directories specified in dir.sims and dir.res do not exists, should it be cre-
ated? Default is TRUE.

dir.psn The directory in which to find PSN’s executables (’execute’ and ’update_inits’).
The default is to rely on the system’s search path. So if you can run ’execute’
and ’update_inits’ by just typing that in a terminal, you don’t need to specify this
unless you want to explicitly use a specific installation of PSN on your system.

modify.model Named list of additional control stream section edits. Note, these can be func-
tions that define how to edit sections. This is an advanced feature which is not
needed to run most simulations. It is however powerful for some types of anal-
yses, like modifying parameter values. See vignettes for further information.

sim.dir.from.scratch

If TRUE (default) this will wipe the simulation directory before running new
simulations. The directory that will be emptied is _not_ dir.sims where you may
keep many or all your simulations. It is the subdirectory named based on the
run name and name.sim. The reason it is advised to wipe this directory is that if
you in a previous simulation created simulation runs that are now obsolete, you
could end up reading those too when collecting the results. NMsim will delete
previously generated simulation control streams with the same name, but this
option goes further. An example where it is important is if you first ran 1000
replications, fixed something and now rand 500. If you choose FALSE here, you
can end up with the results of 500 new and 500 old simulations.

col.row Only used if data is not supplied (which is most likely for simulations for VPCs)
A column name to use for a row identifier. If none is supplied, NMdataConf()[['col.row']]
will be used. If the column already exists in the data set, it will be used as is, if
not it will be added.

args.NMscanData

If execute=TRUE&sge=FALSE, NMsim will normally read the results using NMreadSim.
Use this argument to pass additional arguments (in a list) to that function if you
want the results to be read in a specific way. This can be if the model for some
reason drops rows, and you need to merge by a row identifier. You would do

NMsim 19

‘args.NMscanData=list(col.row="ROW")‘ to merge by a column called ‘ROW‘.
This is only used in rare cases.

path.nonmem The path to the Nonmem executable to use. The could be something like "/usr/local/NONMEM/run/nmfe75"
(which is a made up example). No default is available. You should be able to
figure this out through how you normally execute Nonmem, or ask a colleague.

nmquiet Silent console messages from Nonmem? The default behaviour depends. It is
FALSE if there is only one model to execute and ‘progress=FALSE‘.

progress Track progress? Default is ‘TRUE‘ if ‘quiet‘ is FALSE and more than one model
is being simulated. The progress tracking is based on the number of models
completed, not the status of the individual models.

as.fun The default is to return data as a data.frame. Pass a function (say ‘tibble::as_tibble‘)
in as.fun to convert to something else. If data.tables are wanted, use as.fun="data.table".
The default can be configured using NMdataConf.

suffix.sim Deprecated. Use name.sim instead.

text.table A character string including the variables to export from Nonmem.

system.type A charachter string, either \"windows\" or \"linux\" - case insensitive. Windows
is only experimentally supported. Default is to use Sys.info()[["sysname"]].

dir.res Provide a path to a directory in which to save rds files with paths to results. De-
fault is to use dir.sims. After running ‘NMreadSim()‘ on these files, the original
simulation files can be deleted. Hence, providing both ‘dir.sims‘ and ‘dir.res‘
provides a structure that is simple to clean. ‘dir.sims‘ can be purged when ‘NM-
readSim‘ has been run and only small ‘rds‘ and ‘fst‘ files will be kept in ‘dir.res‘.
Notice, in case multiple models are simulated, multiple ‘rds‘ (to be read with
‘NMreadSim()‘) files will be created by default. In cases where multiple models
are simulated, see ‘file.res‘ to get just one file refering to all simulation results.

file.res Path to an rds file that will contain a table of the simulated models and other
metadata. This is needed for subsequently retrieving all the results using ‘NM-
readSim()‘. The default is to create a file called ‘NMsim_..._MetaData.rds‘ un-
der the dir.res directory where ... is based on the model name. However, if
multiple models (file.mod) are simulated, this will result in multiple rds files.
Specifying a path ensures that one rds file containing information about all sim-
ulated models will be created. Notice if file.res is supplied, dir.res is not
used.

wait Wait for simulations to finish? Default is to do so if simulations are run locally
but not to if they are sent to the cluster. Waiting for them means that the results
will be read when simulations are done. If not waiting, path(s) to ‘rds‘ files to
read will be returned. Pass them through ‘NMreadSim()‘ (which also supports
waiting for the simulations to finish).

auto.dv Add a column called ‘DV‘ to input data sets if a column of that name is not
found? Nonmem is generally dependent on a ‘DV‘ column in input data but
this is typically uninformative in simulation data sets and hence easily forgotten
when generating simulation data sets. If auto.dv=TRUE and no ‘DV‘ column
is found, ‘DV=NA‘ will be added. In this case (‘auto.dv=TRUE‘ and no ‘DV‘
column found) a ‘MDV=1‘ column will also be added if none found.

20 NMsim

clean The degree of cleaning (file removal) to do after Nonmem execution. If ‘method.execute=="psn"‘,
this is passed to PSN’s ‘execute‘. If ‘method.execute=="nmsim"‘ a similar be-
havior is applied, even though not as granular. NMsim’s internal method only
distinguishes between 0 (no cleaning), any integer 1-4 (default, quite a bit of
cleaning) and 5 (remove temporary dir completely).

quiet If TRUE, messages from what is going on will be suppressed.
check.mod Check the provided control streams for contents that may cause issues for simu-

lation. Default is ‘TRUE‘, and it is only recommended to disable this if you are
fully aware of such a feature of your control stream, you know how it impacts
simulation, and you want to get rid of warnings.

seed Deprecated. See seed.R and seed.nm.
list.sections Deprecated. Use modify.model instead.
format.data.complete

For development purposes - users do not need this argument. Controls what
format the complete input data set is saved in. Possible values are ‘rds‘ (default),
‘fst‘ (experimental) and ‘csv‘. ‘fst‘ may be faster and use less disk space but
factor levels may be lost from input data to output data. ‘csv‘ will also lead to
loss of additional information such as factor levels.

... Additional arguments passed to method.sim.

Details

Loosely speaking, the argument method.sim defines _what_ NMsim will do, method.execute
define _how_ it does it. method.sim takes a function that converts an estimation control stream
into whatever should be run. Features like replacing ‘$INPUT‘, ‘$DATA‘, ‘$TABLE‘, and handling
seeds are NMsim features that are done in addition to the method.sim. Also the modeify.model
argument is handled in addition to the method.sim. The subproblems and seed arguments are
available to all methods creating a $SIMULATION section.

Notice, the following functions are internally available to ‘NMsim‘ so you can run them by say
method.sim=NMsim_EBE without quotes. To see the code of that method, type NMsim_EBE.

• NMsim_default The default behaviour. Replaces any $ESTIMATION and $COVARIANCE
sections by a $SIMULATION section.

• NMsim_asis The simplest of all method. It does nothing (but again, NMsim handles ‘$INPUT‘,
‘$DATA‘, ‘$TABLE‘ and more. Use this for instance if you already created a simulation (or
estimation actually) control stream and want NMsim to run it on different data sets.

• NMsim_typical Deprecated. Use typical=TRUE instead.
• NMsim_EBE Simulates _known_ ETAs. By default, the ETA values are automatically taken

from the estimation run. This is what is refered to as emperical Bayes estimates, hence the
name of the method "NMsim_EBE". However, the user can also provide a different ‘.phi‘
file which may contain simulated ETA values (see the ‘file.phi‘ argument). ID values in the
simulation data set must match ID values in the phi file for this step to work. If refering to
estimated subjects, the .phi file from the estimation run must be found next to the .lst file from
the estimation with the same file name stem (say ‘run1.lst‘ and ‘run1.phi‘). Again, ID values
in the (simulation) input data must be ID values that were used in the estimation too. The
method Runs an $ESTIMATION MAXEVAL=0 but pulls in ETAs for the ID’s found in data. No
$SIMULATION step is run which unfortunately means no residual error will be simulated.

NMsimTestConf 21

• NMsim_VarCov Like NMsim_default but ‘$THETA‘, ‘$OMEGA‘, and ‘SIGMA‘ are drawn
from distribution estimated in covariance step. This means that a successful covariance step
must be available from the estimation. NB. A multivariate normal distribution is used for all
parameters, including ‘$OMEGA‘ and ‘$SIGMA‘ which is not the correct way to do this.
In case the simulation leads to negative diagonal elements in $OMEGA and $SIGMA, those
values are truncated at zero. This method is only valid for simulation of ‘$THETA‘ vari-
ability. The method accepts a table of parameter values that can be produced with other
tools than ‘NMsim‘. For simulation with parameter variability based on bootstrap results, use
NMsim_default.

Value

A data.frame with simulation results (same number of rows as input data). If ‘sge=TRUE‘ a char-
acter vector with paths to simulation control streams.

NMsimTestConf Summarize and test NMsim configuration

Description

Summarize and test NMsim configuration

Usage

NMsimTestConf(
path.nonmem,
dir.psn,
method.execute,
must.work = FALSE,
system.type

)

Arguments

path.nonmem See ?NMsim

dir.psn See ?NMsim

method.execute See ?NMsim

must.work Throw an error if the configuration does not seem to match system.

system.type See ?NMsim

22 NMsim_default

NMsim_asis Simulation method that uses the provided control stream as is

Description

The simplest of all method. It does nothing (but again, NMsim handles ‘$INPUT‘, ‘$DATA‘, ‘$TA-
BLE‘ and more. Use this for instance if you already created a simulation (or estimation actually)
control stream and want NMsim to run it on different data sets.

Usage

NMsim_asis(file.sim, file.mod, data.sim)

Arguments

file.sim See ?NMsim.

file.mod See ?NMsim.

data.sim See ?NMsim.

Value

Path to simulation control stream

NMsim_default Transform an estimated Nonmem model into a simulation control
stream

Description

The default behaviour of NMsim. Replaces any $ESTIMATION and $COVARIANCE sections by a
$SIMULATION section.

Usage

NMsim_default(
file.sim,
file.mod,
data.sim,
nsims = 1,
replace.sim = TRUE,
return.text = FALSE

)

NMsim_EBE 23

Arguments

file.sim See ?NMsim.
file.mod See ?NMsim.
data.sim See ?NMsim.
nsims Number of replications wanted. The default is 1. If greater, multiple control

streams will be generated.
replace.sim If there is a $SIMULATION section in the contents of file.sim, should it be

replaced? Default is yes. See the list.section argument to NMsim for how
to provide custom contents to sections with NMsim instead of editing the control
streams beforehand.

return.text If TRUE, just the text will be returned, and resulting control stream is not written
to file.

Value

Character vector of simulation control stream paths

NMsim_EBE Use emperical Bayes estimates to simulate re-using ETAs

Description

Simulation reusing ETA values from estimation run or otherwise specified ETA values. For ob-
served subjects, this is refered to as emperical Bayes estimates (EBE). The .phi file from the es-
timation run must be found next to the .lst file from the estimation.This means that ID values
in the (simulation) input data must be ID values that were used in the estimation too. Runs an
$ESTIMATION MAXEVAL=0 but pulls in ETAs for the ID’s found in data. No $SIMULATION step is run
which may affect how for instance residual variability is simulated, if at all. You can also specify a
different .phi file which can be a simulation result.

Usage

NMsim_EBE(file.sim, file.mod, data.sim, file.phi, return.text = FALSE)

Arguments

file.sim The path to the control stream to be edited. This function overwrites the contents
of the file pointed to by file.sim.

file.mod Path to the path to the original input control stream provided as ‘file.mod‘ to
‘NMsim()‘.

data.sim See ?NMsim.
file.phi A phi file to take the known subjects from. The default is to replace the filename

extension on file.mod with .phi. A different .phi file would be used if you want
to reuse subjects simulated in a previous simulation.

return.text If TRUE, just the text will be returned, and resulting control stream is not written
to file.

24 NMsim_NWPRI

Value

Path to simulation control stream

See Also

simPopEtas

NMsim_NWPRI Simulate with parameter variability using the NONMEM NWPRI sub-
routine

Description

Modify control stream for simulation with uncertainty using inverse-Wishart distribution for OMEGA
and SIGMA parameters

This function does not run any simulations. To simulate, using this method, see ‘NMsim()‘. See
examples.

Usage

NMsim_NWPRI(file.sim, file.mod, data.sim, PLEV = 0.999)

Arguments

file.sim The path to the control stream to be edited. This function overwrites the contents
of the file pointed to by file.sim.

file.mod Path to the path to the original input control stream provided as ‘file.mod‘ to
‘NMsim()‘.

data.sim Included for compatibility with ‘NMsim()‘. Not used.

PLEV Used in $PRIOR NWPRI PLEV=0.999. This is a NONMEM argument to the NW-
PRI subroutine. When PLEV < 1, a value of THETA will actually be obtained
using a truncated multivariate normal distribution, i.e. from an ellipsoidal re-
gion R1 over which only a fraction of mass of the normal occurs. This fraction
is given by PLEV.

Details

Simulate with parameter uncertainty. THETA parameters are sampled from a multivariate normal
distribution while OMEGA and SIGMA are simulated from the inverse-Wishart distribution. Cor-
relations of OMEGA and SIGMA parameters will only be applied within modeled "blocks".

Author(s)

Brian Reilly, Philip Delff

NMsim_typical 25

References

inverse-Wishart degrees of freedom calculation for OMEGA and SIGMA: NONMEM tutorial part
II, supplement 1, part C.

See Also

NMsim_VarCov

Examples

Not run:
simres <- NMsim(file.path,method.sim=NMsim_WPRI,typical=TRUE,subproblems=500)

End(Not run)

NMsim_typical Typical subject simiulation method

Description

Like NMsim_default but with all ETAs=0, giving a "typical subject" simulation. Do not confuse
this with a "reference subject" simulation which has to do with covariate values. Technically all
ETAs=0 is obtained by replacing $OMEGA by a zero matrix.

Usage

NMsim_typical(file.sim, file.mod, data.sim, return.text = FALSE)

Arguments

file.sim See ?NMsim.

file.mod See ?NMsim.

data.sim See ?NMsim.

return.text If TRUE, just the text will be returned, and resulting control stream is not written
to file.

Value

Path to simulation control stream

https://ascpt.onlinelibrary.wiley.com/action/downloadSupplement?doi=10.1002%2Fpsp4.12422&file=psp412422-sup-0001-Supinfo1.pdf
https://ascpt.onlinelibrary.wiley.com/action/downloadSupplement?doi=10.1002%2Fpsp4.12422&file=psp412422-sup-0001-Supinfo1.pdf

26 NWPRI_df

NMsim_VarCov Simulate with parameter values sampled from a covariance step

Description

Like NMsim_default but ‘$THETA‘, ‘$OMEGA‘, and ‘SIGMA‘ are drawn from distribution es-
timated in covariance step. A successful covariance step must be available from the estimation.
In case the simulation leads to negative diagonal elements in $OMEGA and $SIGMA, those val-
ues are truncated at zero. For simulation with parameter variability based on bootstrap results, use
NMsim_default.

This function does not run any simulations. To simulate, using this method, see ‘NMsim()‘.

Usage

NMsim_VarCov(file.sim, file.mod, data.sim, nsims, ext, write.ext = NULL)

Arguments

file.sim The path to the control stream to be edited. This function overwrites the contents
of the file pointed to by file.sim.

file.mod Path to the path to the original input control stream provided as ‘file.mod‘ to
‘NMsim()‘.

data.sim Included for compatibility with ‘NMsim()‘. Not used.

nsims Number of replications wanted. The default is 1. If greater, multiple control
streams will be generated.

ext Parameter values in long format as created by ‘readParsWide‘ and ‘NMdata::NMreadExt‘.

write.ext If supplied, a path to an rds file where the parameter values used for simulation
will be saved.

Value

Character vector of simulation control stream paths

NWPRI_df Add degrees of freedom by OMEGA/SIGMA block

Description

Calculate and add degrees of freedom to be used for simulation using the inverse Wishart distribu-
tion.

Usage

NWPRI_df(pars)

overwrite 27

Arguments

pars Parameters in long format, as returned by ‘NMreadExt()‘.

Details

The degrees of freedom are calculated as DF = 2*((est**2)/(se**2)) + 1 -blocksize-1 DF2 is then
adjusted to not be greater than the blocksize, and the minumum degrees of freedom observed in the
block is applied to the full block. For fixed parameters, DF2 equals the blocksize.

Value

A data.table with DF2 added. See details.

References

inverse-Wishart degrees of freedom calculation for OMEGA and SIGMA: NONMEM tutorial part
II, supplement 1, part C.

See Also

NMsim_NWPRI

overwrite Create function that modifies text elements in a vector

Description

Create function that modifies text elements in a vector

Usage

overwrite(...)

Arguments

... Passed to ‘gsub()‘

Value

A function that runs ‘gsub‘ to character vectors

Examples

myfun <- overwrite("b","d")
myfun(c("a","b","c","abc"))
regular expressions
myfun2 <- overwrite("b.*","d")
myfun2(c("a","b","c","abc"))

https://ascpt.onlinelibrary.wiley.com/action/downloadSupplement?doi=10.1002%2Fpsp4.12422&file=psp412422-sup-0001-Supinfo1.pdf
https://ascpt.onlinelibrary.wiley.com/action/downloadSupplement?doi=10.1002%2Fpsp4.12422&file=psp412422-sup-0001-Supinfo1.pdf

28 readParsWide

readParsWide Parameter data from csv

Description

Reads output table from simpar and returns a long format data.table. This is the same format as
returned by NMreadExt() which can be used by NMsim.

Usage

readParsWide(
data,
col.model = NULL,
strings.par.type = c(THETA = "^T.*", OMEGA = "^O.*", SIGMA = "^S."),
as.fun

)

Arguments

data A data.frame or a path to a delimited file to be read using ‘data.table::fread‘.

col.model Name of the model counter, default is "model". If the provided name is not
found in data, it will be created as a row counter. Why needed? Each row in
data represents a set of parameters, i.e. a model. In the long format result,
each model will have multiple rows. Hence, a model identifier is needed to
distinguish between models in results.

strings.par.type

Defines how column names get associated with THETA, OMEGA, and SIGMA.
Default is to look for "T", "O", or "S" as starting letter. If customizing, make
sure each no column name will be matched by more than one criterion.

as.fun The default is to return data as a data.frame. Pass a function (say tibble::as_tibble)
in as.fun to convert to something else. If data.tables are wanted, use as.fun="data.table".
The default can be configured using NMdataConf.

Details

The wide data format read by ‘readParsWide‘ is not a Nonmem format. It is used to bridge output
from other tools such as simpar, and potentially PSN.

This function reads a data that is "wide" in parameters - it has a column for each parameter, and one
row per parameter set or "model". It returns a data set that is "long" in model and parameters. The
long format contains

• id.model.par The unique model-parameter identifier. The row-identifier.

• model Model identifier.

• par.type ("THETA", "OMEGA", "SIGMA")

• i and j indexes for the parameters (j is NA for par.type=="THETA").

sampleParsSimpar 29

• value The parameter value
• parameter Nonmem-style parameter names. THETA1, OMEGA(1,1) etc. Notice the incon-

sistent naming of THETA vs others.
• name.wide The column name in the wide data where this value was taken

The columns or "measure variables" from which to read values are specified as three regular expres-
sions, called THETA, OMEGA, and SIGMA. The default three regular expressions will associate
a column name starting with "T" with THETAs, while "O" or "S" followed by anything means
"OMEGA" or "SIGMA".

readParsWide extracts i and j indexes from sequences of digits in the column names. TH.1 would
be TETA1, SG1.1 is SIGMA(1,1).

Value

a long-format data.frame of model parameters

Examples

Not run:
tab.ext <- readParsCsv("simpartab.csv")
or
tab.simpar <- fread("simpartab.csv")
tab.ext <- readParsCsv(tab.simpar)
NMsim(...,method.sim=NMsim_VarCov,tab.ext=tab.ext)

End(Not run)

sampleParsSimpar Sample model parameters using the ‘simpar‘ package

Description

Sample model parameters using the ‘simpar‘ package

Usage

sampleParsSimpar(file.mod, nsim, format = "ext", seed.R, as.fun)

Arguments

file.mod Path to model control stream. Will be used for both ‘NMreadExt()‘ and ‘NM-
readCov()‘, and extension will automatically be replaced by ‘.ext‘ and ‘.cov‘.

nsim Number of sets of parameter values to generate. Passed to ‘simpar‘.
format "ext" (default) or "wide".
seed.R seed value passed to set.seed().
as.fun The default is to return data as a data.frame. Pass a function (say ‘tibble::as_tibble‘)

in as.fun to convert to something else. If data.tables are wanted, use as.fun="data.table".
The default can be configured using NMdataConf.

30 simPopEtas

Value

A table with sampled model parameters

Author(s)

Sanaya Shroff, Philip Delff

simPopEtas Generate a population based on a Nonmem model

Description

Generate a population based on a Nonmem model

Usage

simPopEtas(file, N, seed, pars, file.phi, as.fun, file.mod, ...)

Arguments

file Passed to ‘NMdata::NMreadExt()‘. Path to ext file. By default, ‘NMreadExt()‘
uses a‘auto.ext=TRUE‘ which means that the file name extension is replaced by
‘.ext‘. If your ext file name extension is not ‘.ext‘, add ‘auto.ext=FALSE‘ (see
...).

N Number of subjects to generate

seed Optional seed. Will be passed to ‘set.seed‘. Same thing as running ‘set.seed‘
just before calling ‘simPopEtas()‘.

pars A long-format parameter table containing par.type and i columns. If this is sup-
plied, the parameter values will not be read from an ext file, and file has no
effect. If an ext file is available, it is most likely better to use the file argument.

file.phi An optional phi file to write the generated subjects to.

as.fun The default is to return data as a data.frame. Pass a function (say ‘tibble::as_tibble‘)
in as.fun to convert to something else. If data.tables are wanted, use as.fun="data.table".
The default can be configured using NMdataConf.

file.mod Deprecated. Use file instead.

... Additional arguments passed to NMdata::NMreadExt(). Use ‘auto.ext=FALSE‘
if

unNMsimModTab 31

unNMsimModTab Remove NMsimModTab class and discard NMsimModTab meta data

Description

Remove NMsimModTab class and discard NMsimModTab meta data

Check if an object is ’NMsimModTab’

Basic arithmetic on NMsimModTab objects

Usage

unNMsimModTab(x)

is.NMsimModTab(x)

S3 method for class 'NMsimModTab'
merge(x, ...)

S3 method for class 'NMsimModTab'
t(x, ...)

S3 method for class 'NMsimModTab'
dimnames(x, ...)

S3 method for class 'NMsimModTab'
rbind(x, ...)

S3 method for class 'NMsimModTab'
cbind(x, ...)

Arguments

x an NMsimModTab object

... arguments passed to other methods.

Details

When ’dimnames’, ’merge’, ’cbind’, ’rbind’, or ’t’ is called on an ’NMsimModTab’ object, the
’NMsimModTab’ class is dropped, and then the operation is performed. So if and ’NMsimModTab’
object inherits from ’data.frame’ and no other classes (which is default), these operations will be
performed using the ’data.frame’ methods. But for example, if you use ’as.fun’ to get a ’data.table’
or ’tbl’, their respective methods are used instead.

32 unNMsimRes

Value

x stripped from the ’NMsimModTab’ class

logical if x is an ’NMsimModTab’ object

An object that is not of class ’NMsimModTab’.

unNMsimRes Remove NMsimRes class and discard NMsimRes meta data

Description

Remove NMsimRes class and discard NMsimRes meta data

Check if an object is ’NMsimRes’

Basic arithmetic on NMsimRes objects

Usage

unNMsimRes(x)

is.NMsimRes(x)

S3 method for class 'NMsimRes'
merge(x, ...)

S3 method for class 'NMsimRes'
t(x, ...)

S3 method for class 'NMsimRes'
dimnames(x, ...)

S3 method for class 'NMsimRes'
rbind(x, ...)

S3 method for class 'NMsimRes'
cbind(x, ...)

Arguments

x an NMsimRes object
... arguments passed to other methods.

Details

When ’dimnames’, ’merge’, ’cbind’, ’rbind’, or ’t’ is called on an ’NMsimRes’ object, the ’NMsim-
Res’ class is dropped, and then the operation is performed. So if and ’NMsimRes’ object inherits
from ’data.frame’ and no other classes (which is default), these operations will be performed using
the ’data.frame’ methods. But for example, if you use ’as.fun’ to get a ’data.table’ or ’tbl’, their
respective methods are used instead.

unNMsimRes 33

Value

x stripped from the ’NMsimRes’ class

logical if x is an ’NMsimRes’ object

An object that is not of class ’NMsimRes’.

Index

add, 2
addEVID2, 3
addResVar, 5

cbind.NMsimModTab (unNMsimModTab), 31
cbind.NMsimRes (unNMsimRes), 32

dimnames.NMsimModTab (unNMsimModTab), 31
dimnames.NMsimRes (unNMsimRes), 32

expandCovs, 7

genPhiFile, 8

inputArchiveDefault, 8
is.NMsimModTab (unNMsimModTab), 31
is.NMsimRes (unNMsimRes), 32

merge.NMsimModTab (unNMsimModTab), 31
merge.NMsimRes (unNMsimRes), 32

NMcreateDoses, 9
NMexec, 11
NMreadSim, 13
NMsim, 14
NMsim_asis, 22
NMsim_default, 22
NMsim_EBE, 23
NMsim_NWPRI, 24
NMsim_typical, 25
NMsim_VarCov, 26
NMsimModTabOperations (unNMsimModTab),

31
NMsimResOperations (unNMsimRes), 32
NMsimTestConf, 21
NWPRI_df, 26

overwrite, 27

rbind.NMsimModTab (unNMsimModTab), 31
rbind.NMsimRes (unNMsimRes), 32

readParsWide, 28

sampleParsSimpar, 29
simPopEtas, 30

t.NMsimModTab (unNMsimModTab), 31
t.NMsimRes (unNMsimRes), 32

unNMsimModTab, 31
unNMsimRes, 32

34

	add
	addEVID2
	addResVar
	expandCovs
	genPhiFile
	inputArchiveDefault
	NMcreateDoses
	NMexec
	NMreadSim
	NMsim
	NMsimTestConf
	NMsim_asis
	NMsim_default
	NMsim_EBE
	NMsim_NWPRI
	NMsim_typical
	NMsim_VarCov
	NWPRI_df
	overwrite
	readParsWide
	sampleParsSimpar
	simPopEtas
	unNMsimModTab
	unNMsimRes
	Index

